Get WRTDS residuals for each quantile model. These are used to estimate goodness of fit of the model predictions.
wrtdsrsd(dat_in, ...)
# S3 method for class 'tidal'
wrtdsrsd(dat_in, trace = TRUE, ...)
# S3 method for class 'tidalmean'
wrtdsrsd(dat_in, trace = TRUE, ...)Columns are added to the data of the tidal object for residuals and non-conditional residuals. Both are required to assess the goodness of fit measure described for quantile regression in Koenker and Machado (1999).
A tidal object with columns added to the predonobs attribute for the residuals ('rsd') and non-conditional residuals ('rsdnl') of each quantile model or a tidalmean object with columns added to the predonobs attribute for the residuals ('rsd') and back-transformed residuals ('bt_rsd').
Koenker, R., Machado, J.A.F. 1999. Goodness of fit and related inference processes for quantile regression. Journal of the American Statistical Association. 94(448):1296-1310.
## load a fitted model object
data(tidfit)
## run the function
res <- wrtdsrsd(tidfit)
head(res)
#> date res flo lim not_cens day_num month year
#> 1 1974-01-01 3.417727 0.4100012 0.8754687 TRUE 0.005479452 1 1974
#> 2 1974-02-01 3.860730 0.5086014 0.8754687 TRUE 0.090410959 2 1974
#> 3 1974-03-01 2.639057 0.3490211 0.8754687 TRUE 0.164383562 3 1974
#> 4 1974-04-01 2.484907 0.3509642 0.8754687 TRUE 0.249315068 4 1974
#> 5 1974-05-01 2.708050 0.3345128 0.8754687 TRUE 0.331506849 5 1974
#> 6 1974-06-01 2.740840 0.3009137 0.8754687 TRUE 0.416438356 6 1974
#> dec_time fit0.1 fit0.5 fit0.9 norm0.1 norm0.5 norm0.9
#> 1 1974.005 2.610429 3.267295 3.685544 2.570321 3.083240 3.319924
#> 2 1974.090 2.541529 3.157350 3.831174 2.555630 3.008398 3.435083
#> 3 1974.164 2.545622 2.838006 3.280516 2.598238 2.863887 3.368876
#> 4 1974.249 2.511704 2.649719 3.233701 2.581767 2.717951 3.281687
#> 5 1974.332 2.576503 2.709492 3.360528 2.593957 2.734914 3.346043
#> 6 1974.416 2.747688 2.811803 3.463858 2.745408 2.825647 3.474432